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1. Introduction

The Maldacena conjecture [1], which claims an equivalence between N = 4 super Yang-

Mills theory and type IIB string theory in the AdS5×S5 background, is a significant step

in establishing the expectation that large N gauge theories are equivalent to string the-

ory. One approach towards establishing the conjecture is to implement a direct change of

variables from the matrices of the gauge theory to the fields of string theory. Collective

field theory [2] provides a clear and well defined scheme for making this transition. The

first step in this approach is to find a useful parameterization of the complete set of gauge

invariant variables of the matrix model. For a model with more than one matrix, this

purely kinematical problem is already nontrivial. In this note, we call this the kinematical

problem.

The N = 4 super Yang-Mills theory has six hermittian Higgs fields, φi i = 1, 2, . . . , 6,

transforming in the adjoint of U(N). Form the complex combinations Z = φ1 + iφ2,

X = φ3 + iφ4 and Y = φ5 + iφ6. The space of 1
2 BPS representations in N = 4 super

Yang-Mills theory are in one-to-one correspondence with the Schur polynomials built out of

Z [3]. These Schur polynomials have diagonal two point functions [3]. Using insights from

the dual quantum gravity, excitations of these 1
2 BPS states, restricted Schur polynomials,

have been identified [4]. The restricted Schur polynomial is obtained by “attaching” open

string words W to the Schur polynomial. The letters of these open string words can be

fermions, gauge fields or any of the six Higgs fields. If the word W is to be dual to an open

string, it should contain O(
√
N) letters. If the restricted Schur polynomial contains O(N)

fields, it is dual to a membrane with open strings attached; if it contains O(N2) fields, it is

dual to a string moving in a new geometry. Thus, the restricted Schur polynomial starts to
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address the kinematical problem outlined above. The technology for computing correlators

of restricted Schur polynomials has enjoyed some progress [5 – 7]. For related work see [8].

In two recent papers, a large class of operators that diagonalize the two point functions

in the free field theory limit have been given [9, 10]. These include operators built from

Z and Z† [9] and operators built from X,Y and Z [10]. Further, the number of such

operators matches the number of gauge invariant operators that can be constructed. The

results of [9, 10] therefore solve the kinematical problem, in the Higgs sector. This basis

also gives a group theoretic way to approach higher point functions (see [10] where three

and higher point functions are obtained) and to obtain factorization equations which can

be used to build a probability interpretation [11]. By exploiting supergroups [10] have also

explained how to include fermions in addition to the Higgs fields. Finally, the one loop

correction to these two points functions has been considered in [12].

The purpose of this communication is to argue that the restricted Schur polynomials

themselves, provide a solution to the kinematical problem, in the Higgs sector. This is

not unexpected. Indeed, if one excites a 1
2 BPS state by attaching a large number of

words that are composed of a single letter, one is building up multi-matrix operators.

Our argument is simple, employing only very basic group theory. Further, by exploiting

the technology already available for restricted Schur polynomials, explicit formulas for the

relevant restricted Schur polynomials and their two point functions are easily obtained.

2. Two matrix model

Consider a d = 0 matrix model with two types of complex matrices A and B.1 These

complex matrices act on an N -dimensional vector space V , A : V → V . The non-zero

correlators are

〈(A)ij(A
†)kl 〉 = δilδ

k
j = 〈(B)ij(B

†)kl 〉. (2.1)

Consider the operators

χα = Tr n+m(OαA
⊗n ⊗B⊗m),

where Tr n+m is a trace over V ⊗(n+m). A⊗n⊗B⊗m is a shorthand for the tensor Ai1j1A
i2
j2
· · ·

AinjnB
in+1

jn+1
B
in+2

jn+2
· · ·Bin+m

jn+m
and,

Tr n+m(OαA
⊗n ⊗B⊗m) = (Oα)

j1j2···jn+m

i1i2···in+m
Ai1j1A

i2
j2
· · ·AinjnB

in+1

jn+1
B
in+2

jn+2
· · ·Bin+m

jn+m
.

We are interested in computing the correlator 〈χαχ†
β〉. Using (2.1) we obtain

〈χαχ†
β〉 =

∑

γ∈Sn×Sm

Tr n+m(OαγO
†
βγ

−1).

The sum over γ is a sum over all possible Wick contractions. Assume that

Oβ = γOβγ
−1, n!m! Tr n+m(OαO

†
β) = Nαδαβ .

1The spacetime dependence which has been dropped from this model can be trivially reinstated using

the conformal symmetry of the super Yang-Mills theory.
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This means that the Oα are symmetric branching operators [9]. Then the operators χα
diagonalize the two point function

〈χαχ†
β〉 = Nαδαβ .

We will now argue that a complete set of Oα are given by

Oα =
1

n!m!

∑

σ∈Sn+m

TrRα(ΓR(σ))σ,

where Rα is an irreducible representation of Sn × Sm and R is an irreducible represen-

tation of Sn+m. The Sn × Sm subgroup is chosen so that Sn acts on the indices of the

As and Sm on the indices of the Bs. Thus, the Sn × Sm subgroup that we sum over to

include all possible Wick contractions is the same subgroup for which Rα is an irreducible

representation. Under restricting to the Sn× Sm subgroup, R will in general be reducible.

We can decompose the carrier space of irreducible representation R according to the irre-

ducible Sn × Sm representations that are subduced. TrRα is an instruction to trace only

over the subspace corresponding to Rα. For more details see [5]. In this case, the χα are

nothing but restricted Schur polynomials, so that the restricted Schur polynomials solve

the kinematical problem and have diagonal two point functions.

Demonstration that Oβ = γOβγ−1:

γOαγ
−1 =

1

n!m!

∑

σ∈Sn+m

TrRα(ΓR(σ))γσγ−1 =
1

n!m!

∑

τ∈Sn+m

TrRα(ΓR(γ−1τγ))τ

=
1

n!m!

∑

τ∈Sn+m

TrRα(ΓR(γ−1)ΓR(τ)ΓR(γ))τ

=
1

n!m!

∑

τ∈Sn+m

TrRα(ΓRα(γ−1)ΓR(τ)ΓRα(γ))τ

=
1

n!m!

∑

τ∈Sn+m

TrRα(ΓR(τ))τ = Oα.

We used the fact that γ ∈ Sn × Sm, that Rα is an irreducible representation of Sn × Sm

and that the trace is invariant under a similarity transformation.

Demonstration that Tr n+m(OαO
†
β) = Nαδαβ:

n!m!Tr n+m(OαO
†
β) =

1

n!m!

∑

σ∈Sn+m

∑

τ∈Sn+m

TrRα(ΓR(σ))Tr Sβ
(ΓS(τ))∗Tr n+m(στ−1)

=
1

n!m!

∑

σ∈Sn+m

∑

τ∈Sn+m

TrRα(ΓR(σ))Tr Sβ
(ΓS(τ))∗NC(στ−1)

=
1

n!m!

∑

ψ∈Sn+m

∑

τ∈Sn+m

TrRα(ΓR(ψτ))Tr Sβ
(ΓS(τ))∗NC(ψ).
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Now, lets perform the sum over τ (use the fact that (PS→Sβ
)∗jr = (PS→Sβ

)rj because the

projector PS→Sβ
is hermittian)

∑

τ∈Sn+m

TrRα(ΓR(ψτ))Tr Sβ
(ΓS(τ))∗

=
∑

τ∈Sn+m

∑

i j q r

(PR→RαΓR(ψ))iq(ΓR(τ))qi(PS→Sβ
)rj(ΓS(τ))∗rj

= δRS
(n+m)!

dR

∑

i q

(PR→RαΓR(ψ))iq(PS→Sβ
)qi = δRSδRαSβ

TrRα(ΓR(ψ))
(n +m)!

dR
.

We have used the fundamental orthogonality relation

∑

τ∈Sn+m

(ΓR(τ))qi(ΓS(τ))∗rj =
(n+m)!

dR
δqrδijδRS .

Thus, using appendix F of [5] we obtain

n!m!Tr (OαO
†
β) =

δRSδRαSβ

n!m!

(n+m)!

dR

∑

ψ∈Sn+m

TrRα(ΓR(ψ))NC(ψ)

=
δRSδRαSβ

n!m!

(n+m)!

dR
dRαfR = δRSδRαSβ

(hooks)R
(hooks)Rα

fR .

Rα is a rep of Sn × Sm which is labelled by one Young diagram of n boxes, Rn, and one

Young diagram of m boxes, Rm. (hooks)Rα
is the product of (hooks)Rn

with (hooks)Rm
.

Arguing as we did above, it is simple to obtain

OαOβ =
(n+m)!

dRn!m!
δαβOα.

Thus, up to normalization our operators Oα are projectors. For an earlier use of projectors,

along the lines of this note but in the setting of a single matrix, see [13]. From now on we

write χR,Rα instead of χα. In general, the row and column index of the restriction Rα can

be different (see [4, 5] for a detailed discussion). Spell out these row and column indices

by replacing Rα → (rα1 , rα2). The two point function is

〈χR,(rα1 ,rα2)χ
†

S,(sβ1
,sβ2

)〉 = δRSδrα1sβ1
δrα2sβ2

(hooks)R
(hooks)Rα

fR . (2.2)

It is equally easy to argue that

〈χR,(rα1 ,rα2)χS,(sβ1
,sβ2

)〉 = δRSδrα1sβ2
δrα2sβ1

(hooks)R
(hooks)Rα

fR . (2.3)

In sections 3 and 5 we will give evidence that the number of restricted Schur polynomials

χR,Rα is equal to the number of gauge invariant operators in the matrix model.
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3. Counting

The number of gauge invariant operators N(n,m) built out of n As and m Bs is given by

Polya theory as
∞
∏

k=1

1

1 − (xk + yk)
=

∑

n,m

N(n,m)xnym.

We claim that the number of gauge invariant operators N(n,m) is equal to the number of

restricted Schur polynomials χR,Rα with R an irreducible representation of Sn+m and Rα

an irreducible representation of Sn × Sm. It is easy to check for small values of n and m

that this is indeed the case. As an example, consider m = n = 2. In this case, R is an

irreducible representation of S4. We easily find N(2, 2) = 10. The allowed restricted traces

(R;Rα) are

( ; ⊗ )

( ; ⊗ ), ( ; ⊗ ), ( ; ⊗ )

( ; ⊗ ), ( ; ⊗ )

( ; ⊗ ), ( ; ⊗ )( ; ⊗ )

( ; ⊗ ).

Thus, there are indeed ten possible restricted Schur polynomials.

There is a subtlety that did not show up in the above example: in the notation of [5, 4],

we can trace over an off the diagonal block. For example, amoung the S3 × S3 irreducible

representations subduced by the S6 irreducible representation

R =

we find two copies of

⊗ .

Call these two copies R
(1)
α and R

(2)
α . When performing the restricted trace, we can use

R
(i)
α for the row index and R

(j)
α for the column index with R

(i)
α 6= R

(j)
α . Thus, there are

four possible operators we can define. In general, if R subduced m copies of an irreducible

representation Rα we would be able to construct m2 independent operators. For further

details consult section 2.2 of [5].
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4. Examples

The simplest way to construct restricted Schur polynomials, is to use a projection operator

to implement the restricted trace. In this section we will construct restricted Schur poly-

nomials built from at most three matrices, which can be any of two different types X or

Y . This will already allow us to see that the restricted Schur polynomials define a different

basis for gauge invariant operators, than the bases given in [9, 10]. The construction of

χ ; ⊗ = Tr (X)Tr (Y ) + Tr (XY ), χ
; ⊗

= Tr (X)Tr (Y ) − Tr (XY ),

is particularly simple because we do not need a projector to implement the restricted trace.

This follows because ⊗ is the only S1 × S1 irreducible representation subduced from

either or . Up to normalization, these are identical to the operators constructed in

appendix E1 of [10]. Consider next

χ ; ⊗ =
1

2

[

Tr (X)2Tr (Y ) + Tr (X2)Tr (Y ) + 2Tr (XY )Tr (X) + 2Tr (X2Y )
]

,

χ

; ⊗

=
1

2

[

Tr (X)2Tr (Y ) − Tr (X2)Tr (Y ) − 2Tr (XY )Tr (X) + 2Tr (X2Y )
]

.

For these two restricted Schur polynomials we again do not need a projector to implement

the restricted trace. If we take

χR,Rα =
1

2!

∑

σ∈S3

TrRα(ΓR(σ))Xi1
iσ(1)

Xi2
iσ(2)

Y i3
iσ(3)

,

then Rα is an irreducible representation of S2×S1. The S2 subgroup is obtained by taking

those elements of S3 that act on the indices of the Xs, i.e. {1, (12)}. To compute

χ
; ⊗

=
1

2

[

Tr (X)2Tr (Y ) + Tr (X2)Tr (Y ) − Tr (XY )Tr (X) − Tr (X2Y )
]

,

we used the projector

P
→ ⊗

=
1

2

(

1 + Γ ((12))
)

.

To compute

χ
; ⊗

=
1

2

[

Tr (X)2Tr (Y ) − Tr (X2)Tr (Y ) + Tr (XY )Tr (X) − Tr (X2Y )
]

,

we used the projector

P
→ ⊗

=
1

2

(

1 − Γ ((12))
)

.

For more details on these projectors see appendix B.2 of [5] and appendix A of [7]. Com-

paring these expressions to the expressions in appendix E.2 of [10], it is clear that the basis

furnished by the restricted Schur polynomials does not coincide with the basis of [10].

We can use the Σ map of [9] to construct new operators built out of Z and Z∗. Under

the map Σ, Bα = Σ−1(Oα) becomes a sum over elements of the Brauer algebra. In [9] it
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was argued that if γOαγ
−1 = Oα for γ ∈ Sn × Sm then γBαγ

−1 = Bα for γ ∈ Sn × Sm.

Also, again using a result of [9], (Trm+n denotes a trace over V ⊗(n+m) and Trm,n denotes

a trace over V ⊗n ⊗ V̄ ⊗m)

Trm,n(BαBβ) = Trm+n(OαOβ) =
Nα

n!m!
δαβ .

Thus, the operators

ηα = Trm,n(BαZ
⊗n ⊗ Z∗⊗m),

have a diagonal two point function

〈ηαη†β〉 = Nαδαβ .

For m = n = 1 we find

B1 = Σ

(

1

2
(1 + (12))

)

=
1

2

(

1 + C11̄

)

,

B2 = Σ

(

1

2
(1 − (12))

)

=
1

2

(

1 − C11̄

)

.

These do not match the operators given in appendix A.4.1 of [9], implying that the re-

stricted Schur polynomials do not coincide with the basis constructed in [9] either. This is

clear when one notes that the coefficients on the projectors in [9] are N dependent; there

is no way in which our operators could pick up N dependent coefficients.

Recall that weights are assigned to boxes in a Young diagram by assigning N to the

box in the upper left hand corner of the Young diagram, adding one each time we move to

the right and subtracting one each time we move down. Thus, box i in the Young diagram

1 2 3
4 5

has weight ci with c1 = c5 = N , c2 = N + 1, c3 = N + 2 and c4 = N − 1. fR is the product

of weights of the Young diagram, so that, for example

f = N2(N2 − 1)(N + 2).

Next, since

hooks( ) = 5! hooks( ) = 3! hooks( ) = 2!,

we have from (2.2)

〈χ ; ⊗ χ
†

; ⊗ 〉 =
5!

3! × 2!
f .

Similary,

〈χ
; ⊗

χ
†

; ⊗

〉 =
4! × 3!

3! × 3!
f .
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If any of the labels on the restricted Schur polynomial do not match, the correlator vanishes

〈χ
; ⊗

χ
†

; ⊗ 〉 = 0,

〈χ
; ⊗

χ
†

; ⊗

〉 = 0,

〈χ
; ⊗

χ
†

; ⊗

〉 = 0.

To determine which Sn × Sm irreducible representations are subduced by a particular

Sn+m irreducibe representation is easy: assume that the Young diagram R describes the

irreducible representation of Sn+m that we are studying. Consider all possible ways of

removing n boxes from R so that the remaining m boxes form a legal Young diagram Rm.

Remove the n boxes preserving common sides and take the tensor product of the removed

pieces to get Rn. This rule is easily illustrated with an example; consider

R = .

Assume that n = m = 3. Denoting removed boxes with an x we have

xx
x Rm = , Rn = ,

xx
x

Rm = , Rn = ,

x
x

x Rm = , Rn = ⊗ ⊗ = ⊕ ⊕ 2 .

Thus, R subduces 6 irreducible representations of S3 × S3.

5. Generalization to multi-matrix models

The above results generalize in a simple way to multi-matrix models. Consider a model of

M matrices and assume that χR,Rα is built from mi matrices of each type. Then Rα is an

irreducible representation of Sm1 × Sm2 × · · · × SmM
. To remove self contractions (present

if we have real matrices or if we build χR,Rα from complex matrices and their adjoints)

we simply normal order χR,Rα . This gives a unified treatment of both branes/antibrane

systems and operators built from more than one Higgs field. These operators are labeled

by M + 1 Young diagrams, one with m1 +m2 + . . .+mM boxes, R and M with mi boxes,

Ri. In this more general case we still have (2.2) with

(hooks)Rα
=

M
∏

i=1

(hooks)Ri
.

It is straight forward to replace boxes in the Ri by open strings so that excited operators

can be constructed and studied using the techniques developed in [5 – 7].
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We again claim that the total number of restricted Schur polynomials that can be

defined will be equal to the number of gauge invariant operators that can be constructed.

There are some non-trivial tests we can perform of this claim. For example, consider

operators built using one of each of the M types. In this case, we need to start with an

irreducible representation of SM and count how many restricted Schur polynomials we can

form when the representation of the restriction is S1 ×S1 × · · · ×S1 (there are M factors).

To get the number of irreducible representations that can be subduced from a given Young

diagram R, we need to count the number of ways we can pull boxes off R such that at

each step we have a legal Young diagram. This is obviously dR, the dimension of the SM
representation labeled by R. Any of these subduced representations may be twisted, so that

we obtain a total of d2
R operators. Thus, the total number of restricted Schur polynomials,

found by summing over all SM irreducible representations, is simply
∑

R

(dR)2 = M !.

Lets now compare this to the counting of the gauge invariant operators. According to Polya

theory, the number of gauge invariant operators is given by the coefficient of x1x2 · · · xM
in the expansion of

∞
∏

k=1

1

1 − (xk1 + xk2 + · · · + xkM )
=

∑

n1,n2,···,nm

t(n1, n2, · · · , nM )xn1
1 xn2

2 · · · xnM

M .

It is simple to see that

t(1, 1, · · · , 1) = M !,

which supports our claim.

6. Numerical tests

We have counted the number of restricted Schur polynomials χR,Rα that be obtained when

R is an irreducible representation of Sn with n ≤ 6 and we have a total of M = 6 matrices.

In all of these cases, the number of restricted Schur polynomials equals the number of gauge

invariant operators counted using Polya theory. Further, we have numerically evaluated the

two point functions of these restricted Schur polynomials and verified that (2.2) is indeed

correct. In performing these checks, the restricted characters TrRα (ΓR[σ]) were evaluated

by explicitly constructing the matrices ΓR[σ]. Each representation used was obtained by

induction. One induces a reducible representation; the irreducible representation required

was isolated using projection operators built from the Casimir obtained by summing over

all two cycles. The restricted trace was then evaluated with the help of suitable projectors.

See appendix B.2 of [5] and appendix A of [7] for more details. In all cases the numerical

result is in exact agreement with (2.2).

7. Conclusions

Restricted Schur polynomials provide a useful parameterization of the complete set of gauge

invariant variables of multi-matrix models. They have diagonal two point functions. Since
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in the labeling of the restricted Schur polynomial, each type of matrix has its own Young

diagram, the technology for attaching open strings has a straight forward generalization to

the operators considered in this article.

For brane-anti-brane operators, the restricted Schur polynomials do not coincide with

the Brauer basis constructed in [9]. Since the Brauer projectors are N dependent, the

relation between the two bases is N dependent. It seems that the Brauer basis may be the

most useful for identifying brane - anti-brane operators and the restricted Schur polynomial

basis for stringy excitations. It is plausible that there is a simple relation between the

restricted Schur polynomials and the operators of [10]. For example, χ
; ⊗

− χ
; ⊗

is

(up to an overall constant factor) equal to the operators constructed in E.2 and E.3 of [10].

Since the restricted Schur polynomials have an interpretation in terms of attaching open

strings, developing this relation may well shed light on the interpretation of the labels of

the operators constructed in [10]. We leave this interesting problem for the future.

Finally, it would be interesting to explore finite N effects. These effects are encoded

in the fact that our Young diagram labels can have at most N rows. Specifically, in the

restricted Schur polynomial χR,(rα1 ,rα2) we must require that the Young diagram R has at

most N rows; the same will automatically be true for rα1 and rα2 . This should translate

into a generalization of the stringy exclusion principle present for Schur polynomials built

using a single matrix Z. Finite N counting for multi-matrix operators has been considered

in [10, 14]. For example, the number of operators built using µ1 X fields and µ2 Y fields,

at infinite N is given by2

N(µ1, µ2) =
∑

T

∑

Λ

C(T, T,Λ)g(µ; Λ).

In this formula, T is a representation of Sn with n = µ1 +µ2, C(T, T,Λ) is the coefficient of

Λ in the (inner) tensor product T ⊗ T and g(µ; Λ) is the Littlewood-Richardson coefficient

which counts states in the representation Λ that have the field content µ = [µ1] ⊗ [µ2]. To

get the finite N counting, one simply truncates the sum over T to Young diagrams with

at most N rows. We can see, in some simple examples, that our cut off on R does indeed

match the finite N counting of [10, 14]. Consider for example the operators built using 3

X fields and a single Y field. The relevant Littlewood-Richardson coefficients are

g( , ; ) = 1, g( , ; ) = 1.

The relevant inner products are
⊗ = ,

⊗ = ⊕ ⊕ ⊕ ,

⊗ = ⊕ ⊕ ,

⊗ = ⊕ ⊕ ⊕ ,

2We are considering the case of two matrices for simplicity. The formula for M matrices has been

determined in [10, 14].
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⊗ = .

Clearly then, at infinite N , the number of operators we can construct is

N(2, 1) =
∑

T

(C(T, T, ) +C(T, T, ))

= C( , , ) + C( , , ) + C( , , ) + C( , , )

+C( , , ) + C( , , ) + C( , , ) = 7.

At N = 2, this counting becomes

N(2, 1) =
∑

T

(C(T, T, ) + C(T, T, ))

= C( , , ) + C( , , ) +C( , , )

+C( , , ) = 4.

Lets now count the restricted Schur polynomials. At infinite N we find 7 possible operator,
with R, rα1rα2 labels given by

, , , ,

, , ,

At N = 2 there are only 4 operators, with labels given by

, , , ,

Providing a proof that our cut off on R matches the finite N counting of [10, 14] remains

an interesting open problem.
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